Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems
نویسندگان
چکیده
Abstract—This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and nonlinear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.
منابع مشابه
Analytical assessment of reinforced concrete frames equipped with TADAS dampers
In recent years, it is considerably attempted to develop the concept of energy dissipation as an applicable technology to overcome the energy released by earthquakes. The passive control systems such as metallic dampers have been widely considered. The dampers are basically used to mitigate the structural responses and reduce the damages in main structural elements by energy dissipation. ...
متن کاملEvaluation of the Effect of Connection between RC Shear Wall and Steel Moment Frame on Seismic Performance and Reduction Factor in Dual Systems
Dual systems of steel moment frame and reinforced concrete shear wall have combined the advantages of steel frames and reinforced concrete shear wall. These walls have increased the lateral stiffness of steel frames and have reduced seismic demands on steel frames thus providing opportunities to use such system. In this research intermediate dual system of steel moment frame was chosen with int...
متن کاملUse of Supplemental Damping Devices for Seismic Strengthening of Lightly Reinforced Concrete Frames
1. ABSTRACT Devices which can add damping and strengthen structural systems, without changes to the existing components, were found recently extremely useful in retrofitting lightly reinforced frames and other structures. Some damping devices were developed purposely for building structures, however, many more were adapted from use in other industries such as the military and aerospace. Damping...
متن کاملPerformance Based Seismic Retrofit of Masonry Infilled Reinforced Concrete Frames Using Passive Energy Dissipation Devices
The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at t...
متن کاملComparative Review of the Performance Based Design of Building Structures Using Static Non-Linear Analysis, Part A: Steel Braced Frames
The objective of this review to be submitted in two independent parts, for steel frames and for RC frames, is to compare their structural performance with respect to the proposed N2-method, and so also of the consequent convenience of using pushover methodology for the seismic analysis of these structures. A preliminary investigation is presented on a pushover analysis used for the seismic perf...
متن کامل